

Radiometric Scaling and Stability Assessment of MODIS and SNPP-VIIRS

Raj Bhatt, David Doelling, Benjamin Scarino, Arun Gopalan, and Conor Haney

CERES Imager and Geostationary Calibration Group

May 7, 2019 CERES Science Team Meeting

Outline

- Background
 - MODIS and VIIRS relevance to CERES
 - CERES Imager and Geostationary Calibration Group
- MODIS and VIIRS Calibration stability assessment
 - Temporal radiometric stability
 - Response versus scan-angle (RVS) dependency
- Radiometric scaling of VIIRS to MODIS
- Radiometric scaling between MODIS collections and VIIRS versions
- Geostationary imager calibration
- Summary

Background

- Why calibration of MODIS and VIIRS matter to CERES?
 - CERES relies on coincident measurements from onboard imagers (MODIS, VIIRS) for proper scene identification needed to convert CERES radiances into radiative fluxes
 - SYN1deg products utilize GEO derived broadband (BB) fluxes and cloud properties
 - To ensure that the GEO BB fluxes and cloud properties are consistent across GEO sensors, the GEO radiances are radiometrically scaled to MODIS
- Consistent retrievals of cloud properties requires
 - Individual imager records are temporally stable in their calibration
 - MODIS and VIIRS imagers are radiometrically consistent
- Any radiometric drift in MODIS manifests itself in both the MODIS and GEO cloud retrievals
- On-orbit changes in scan-mirror reflectivity and solar diffuser (SD) necessitates independent evaluation of MODIS radiometric quality
- CERES imager and geostationary calibration group (IGCG) performs calibration assessment of MODIS, VIIRS, and GEO imagers in real-time using multiple approaches

MODIS and VIIRS stability assessment based on Earth invariant targets

Dome-C

- Near nadir measurements
- Pre and post solstice directional models (DM)
- Construct the DM from stable part of the record

Libya-4

- Near-nadir measurements
- Forward/backward scattering directional models (DM)
- Construct the DM from stable part of the record

Deep Convective Cloud

- $\pm 40^{\circ}$ VZA, Look-up table BRDFs
- Large ensemble statistical approach
- PDF mode and Mean tracks stability

MODIS C6.1 and VIIRS V1 temporal stability

- All reflective solar bands (RSB) of SNPP-VIIRS and Aqua-MODIS are stable within 1%
- Terra-MODIS 0.65-µm band is stable within 1%
- Terra-MODIS SWIR bands exhibit trends and discontinuity in calibration after 2016 when Terra entered into safe mode (will be discussed later)

Available at: https://cloudsway2.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=STABILITY-SNPP-VIIRS

RVS improvements in Terra-MODIS C6.1

- Scan-mirror reflectance is a function of AOI
- Solar Diffuser (SD) and lunar view can calibrate at two fixed AOIs
- C5 used linearly-interpolated SD/lunar measurements for RVS characterization
- C6 and C6.1 use SD, lunar, and Saharan Desert sites measurements for RVS characterization
- C5 RVS drifts < 6% for band 1
- C6.1 RVS drifts within ~1.5% for band 1

RVS improvements in Aqua-MODIS C6.1

- C5 and C6 (until Jul 2016) used SD and lunar measurements for RVS characterization
- C6 (Jul 2016 onwards) and C6.1 use SD, lunar, and Saharan Desert sites for RVS characterization
- C6 RVS drifts <3% for VIS/NIR
- C6.1 RVS drifts <1% for VIS/NIR

Calibration anomalies in Terra-MODIS C6.1

- Terra-MODIS SWIR bands are contaminated by electronic crosstalk from thermal bands
- Crosstalk issue amplified after 2016 safemode event, resulting in discontinuities
- 1.24-µm trend rate increased after 2016
- 1.38-µm band reveals positive trend in leftside scans
 - invariant ground sites are inapplicable for RVS characterization
 - DCC approach is still applicable
- 1.6-µm band reveals 1% calibration jump
- 2.1-µm band shows ~3% calibration discontinuity

To scale VIIRS to MODIS

Spectral Band differences

- SCIAMACHY spectral band adjustment factor (SBAF)
- Specific to scene type

SBAF Tool: https://cloudsway2.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=SBAF

To scale VIIRS to MODIS

Reference Solar Spectrum

- MODIS and VIIRS are calibrated on Reflectance scale
- Radiance = Reflectance $\times E_{SUN} \times \cos(SZA)/d^2$
- Terra and Aqua MODIS uses mix of Thuillier,
 Neckel and Labs, and Smith and Gottlieb solar spectra
- SNPP-VIIRS uses Kurucz solar spectra
- NOAA-20 VIIRS uses Thuillier spectra
- Biases are different for radiance and reflectance
- Difference in reference solar spectra can induce additional radiance bias

4% difference in E_{sun} for 1.24- μ m band

Solar constant tool: https://cloudsway2.larc.nasa.gov/cgi-bin/site/showdoc?mne/monic=SOLAR-CONSTANT-COMPARISONS

Scaling of SNPP-VIIRS V01 to Aqua-MODIS C6.1

Aqua-MODIS Band 1/VIIRS I1

- All-sky tropical ocean raymatching
- Matches within 15 minutes
- VZA, SZA<40°;
 ΔVZA, ΔSZA< 3°
- 10°<RAA<170°;
 △RAA=3°-10°

SNPP-VIIRS to Aqua-MODIS scaling validation

DCC Ray-matching

- Coincident DCC footprints
- Minimal SBAF corrections

DCC-Invariant Target

- Large ensemble statistical approach
- Comparison of monthly mode and mean
- LUT BRDFs

Libya-4 and Dome-C

- Forward/backward scattering directional models (DM)
- VIIRS radiances are compared against MODIS DM

SNPP-VIIRS and Aqua-MODIS biases

MODIS/VIIRS Band pair	Reflectance Bias (%)				
	ATO-RM	DCC-RM	DCC-IT	Libya-4	Dome-C
B3/M3 (0.48 µm)	+1.2	+2.8	+2.4	+2.9	+2.8
B4/M4 (0.55 μm)	+2.5	+2.7	+1.9	+2.4	+2.5
B1/M5 (0.65 µm)	+2.3	+2.7	+1.9	+2.0	+1.9
B1/I1 (0.65 μm)	+1.1	+1.2	+0.3	+1.0	+1.0
B2/M7 (0.86 µm)	+2.1	N/A	N/A	+2.7	+2.0
B5/M8 (1.24 µm)	+3.3	+3.7	+3.3	+3.2	
B26/M9 (1.38 µm)	+4.7	+5.4	+4.9	N/A	
B6/M10 (1.6 µm)	+2.0	+1.8	+1.1	+4.6	
B6/I3 (1.6 µm)	+3.4	+3.4	+2.6	+6.4	

- ATO-RM primary method, other methods are used for validation
- SNPP-VIIRS reflectance values are brighter than those from Aqua-MODIS
- 1.38-μm has largest bias
- Larger inconsistency seen in 1.6-μm band using Libya-4 (working with MCST on this)
 Bias = 100% x (VIIRS-MODIS)/VIIRS

Scale MODIS C6 to C5

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

- CERES Ed4 switched to using MODIS C6 on Feb 2017
- Single granule from TWP domain (Nov 2016)
- Regress C5* and C6 pixel reflectance values
 - C5* includes scaling adjustment implemented in Ed4 cloud properties to mitigate the impact of Terra-MODIS degradation in C5

Collaboration with MCST/VCST

- Methodology sharing, independent validation, improvement suggestions, joint publications (7 journal articles and 2 conference proceedings)
- 1. R. Bhatt *et al.*, "Response Versus Scan-angle assessment of MODIS Reflective Solar Bands in Collection 6.1 Calibration," *IEEE Transactions on Geoscience and Remote Sensing*, under review, 2019.
- 2. A. Angal, X. Xiong, Q. Mu, D. R. Doelling, R. Bhatt and A. Wu, "Results From the Deep Convective Clouds-Based Response Versus Scan-Angle Characterization for the MODIS Reflective Solar Bands," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 56, no. 2, pp. 1115-1128, Feb. 2018.
- 3. Q. Mu, A. Wu, X. Xiong, D. R. Doelling, A. Angal, T. Chang, R. Bhatt, "Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands," *Remote Sens.*, 9, 535, 2017.
- 4. R. Bhatt *et al.*, "Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds," *J. Appl. Remote Sens.*, vol. 11, no. 1, p. 016014, 2017.
- 5. D. R. Doelling *et al.*, "The Radiometric Stability and Scaling of Collection 6 Terra- and Aqua-MODIS VIS, NIR, and SWIR Spectral Bands," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 53, no. 8, pp. 4520-4535, Aug. 2015.
- 6. R. Bhatt, D.R. Doelling, A. Wu, X. Xiong, B.R. Scarino, C. O. Haney, A. Gopalan, "Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets," *Remote Sens.*, 2014, 6, 2809-2826.
- 7. A. Wu, X. Xiong, D. R. Doelling, D. Morstad, A. Angal and R. Bhatt, "Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands' Calibration Stability," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 51, no. 7, pp. 4330-4338, July 2013.

GEO imager calibration

YEAR

- All-sky tropical ocean ray-matching
- Calibrate full dynamic range of GEO sensor
- Matches within 15 minutes
- VZA, SZA<40°;
 △VZA=5°-15°
 10°<RAA<170°;
 △RAA=5°-15°
- Update calibration every 2 months
- MODIS calibration anomalies inherited to GEO

GEO imager calibration validation

- Three independent validation approaches
- Referenced to Aqua-MODIS C6.1

DCC Ray Matching

- Coincident DCC matches with MODIS
- Spectral difference effects are minimal
- MODIS calibration anomalies inherited to GEO

DCC-Invariant Target (DCC-IT)

- Utilizes tropical DCC as invariant targets
- Coincident matches not required
- Calibrate GEOs in the absence of MODIS

DERM (Desert approach)

- Daily exo-atmospheric radiance models over deserts
- Benefit from consistent imaging schedules of GEOs
- Calibrate GEOs in the absence of MODIS

Summary

- SD and lunar measurements are inadequate to track on-orbit changes in optical properties of scan mirror in MODIS
- CERES IGCG works closely with MCST/VCST in monitoring the radiometric quality of MODIS and VIIRS L1B products
- CERES IGCG provides
 - independent assessment of MODIS and VIIRS stability (annual update) and RVS performance
 - VIIRS to MODIS scaling factors
 - MODIS Collection and VIIRS version scaling
 - GEO to MODIS scaling (bi-monthly update)
- Observed calibration anomalies in Terra-MODIS C6.1 may potentially influence cloud properties, particularly after 2016
- Plots and coefficients located at web site

Additional slides

Polarization sensitivity

- Terra-MODIS has significant change in polarization sensitivity at short wavelengths
- Right-side scans are affected
- DCC and desert trends disagree due to difference in the strength of Rayleigh scattering over the scene types

Terra-MODIS band 3 (0.47 μm)

Radiometric scaling between VIIRS versions

- NASA Land SIPS distributes different versions of SNPP VIIRS sub-setted data for CERES.
- New version implements improved calibration algorithm and consistent LUT.
- Scaling between different versions is possible via direct comparison or F-factor ratio (provided by VCST).
- Version 2 will be available soon.

Radiometric stability assessment

- Temporal stability
 - Pseudo-invariant Earth targets (deserts, polar icecap, DCC)
- Response versus scan-angle (RVS) dependency
 - Scan-angle response difference monitored on annual basis
 - Uses DCC and Saharan Deserts
- Kernel-based BRDFs for deserts and polar icecap
- Look-up table BRDFs for DCC
 - Channel-specific for SWIR bands
- Why multiple Earth targets
 - cover sensor dynamic range
 - cover all scan angles
 - channel-specific scenes
 - high confidence in results

